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We develop a hybrid numerical asymptotic method for the Helmholtz equation.
The method is a Galerkin finite element method in which the space of trial solutions
is spanned by asymptotically derived basis functions. The basis functions are very
“efficient” in representing the solution because each is the product of a smooth
amplitude and an oscillatory phase factor, like the asymptotic solution. The phase is
determined a priori by solving the eiconal equation using the ray method, while the
smooth amplitude is represented by piecewise polynomials. The number of unknowns
necessary to achieve a given accuracy with this new basis is dramatically smaller than
the number necessary with a standard method, and it is virtually independent of the
wavenumbek. We apply the method to the problems of scattering from a parabola
and from a circle and compare the results with those of a standard finite element
method. (© 2001 Elsevier Science
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1. INTRODUCTION

Scattering problems for the Helmholtz equation involving large values of the wavenuml
k are notoriously difficult to solve numerically by standard finite element methods. See
example [1-3]. Accurate solutions require very refined meshes due to the highly oscillat
nature of the solutions. K is large enough, the number of unknowns associated with tr
mesh is so large that the problem is computationally intractable. But forksagymptotic
solutions of scattering problems, valid fotarge, are provided by the geometrical theory
of diffraction [4—6]. These asymptotic solutions are sums of products of rapidly oscillatil
phase factors multiplied by slowly varying amplitude factors. The phase factors can
determined easily by ray tracing. However, the determination of the amplitude factors
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often difficult because it can involve the construction and matching of several differe
expansions. To overcome the difficulty of finding the amplitude factors in the asymptc
method, and to avoid the necessity for a fine mesh in the finite element method, we com
the best features of both methods.

To do so we develop a hybrid numerical asymptotic method which yields accurate sc
tions with a number of unknowns that is virtually independent of the wavenukntégur
method is based on the introduction of asymptotically derived basis functions, which
use to define the space of trial solutions in a Galerkin finite element method. The b:
functions are very “efficient” in representing the solution because each is the product «
smooth amplitude function and an oscillatory phase factor, like the terms in the asympt
solutions. The phase factor is determined a priori by solving the eiconal equation of g
metrical optics for the phase, using ray tracing. The smooth amplitude, which is represel
by a standard finite element basis, is determined by the Galerkin method.

The resolution of the computational grid is commensurate with the variation of the smo
amplitude, and therefore it is relatively coarse, and in general virtually independent of
wavenumbek. In some scattering problems, the amplitude develops a sharp transitior
a small portion of the domain, such as a shadow boundary or caustic. In these cases,
local refinement is necessary, and the problem remains computationally tractable.

This method extends our results in [7] and [8]. In one dimension it is similar in spirit to tf
method of Melenk and Balska [9, 10], and Balska and Sauter [1], which employs basis
functions involving trigonometric functions. Laghrouche and Bettess [11], and Laghrouc
et al.[12] extended that method to two dimensions using basis functions involving pla
waves. A different hybrid of asymptotic and finite elements, closer to ours, was introduc
by Barboneet al. [13]. It employs a field constructed by using the geometrical theory c
diffraction [4] in most of the domain, together with fields represented by finite eleme
basis functions in neighborhoods of points of diffraction, such as corners on the scatte
object.

Although our method can be used to treat a wide variety of wave propagation proble
here we just introduce it and apply it to a few examples of scattering involving reflecti
and diffraction from smooth surfaces. In Section 2 we introduce the method in the c
text of a one-dimensional problem. We extend it to two space dimensions in Sectior
In Section 3.2.1 we review the elements of the asymptotic theory needed to develop
asymptotically derived basis functions, and in Section 3.2.2 we introduce these new b
functions. Then in Section 3.3, we apply the method to scattering from a parabola, an
Section 3.4 we apply it to scattering from a circle. In section 3.5 we summarize the mett
and describe how to use it in three dimensions. In the Appendix we show that the new fi
elements are asymptotically orthogonal kdarge.

2. AMODEL PROBLEM

2.1. Variational Formulation and Galerkin Approximation

We consider the propagation of a time harmonic wave traveling to the right along |
positivex axis. Its motion is described by the one-dimensional Helmholtz equation

u” + k?n?(x)u = 0, (1)
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subject to the conditions thatis outgoing ax = +oo, and that
u(0) = 1. (2

Herek is the wave number ami(x) is the index of refraction, assumed to be positive. We
assume that(x) — 1 is negligible forx > 7 and replace the outgoing condition by

u'(m) —iku(r) = 0. (3)

In order to state the variational formulation of problem (1)—(3) fer & < 7, we intro-
duce the spacé of trial solutions and the spadeof test functions:

S={ulueHY0,x]),u© =1}, (4)
VY ={w|we HYO, x]), w(0) = 0}. (5)

The Sobolev spackl ([0, 7]) consists of all complex-valued functions on [0, 1] whose
first derivative is square integrable. The variational formulation of problem (1)—(3) is:

findu € S such thatforalw € V, a(u, w) =0. (6)

The hermitian bilinear forna in (6) is defined by

a(u, w) = —/ u'(Hw'(t) dt + kz/ n2ut)w(t) dt + iku(m)w(n). 7)
0 0

The formulation (6) is derived in standard fashion (see [14, 15]) by multiplying (1) by tt
complex conjugate of a test functionw € V, integrating by parts, and using (3).

We shall approximate the solution to this variational problem by the Galerkin methc
Hence we introduce finite dimensional spacsc S and )V, C V. The subscript in
Sh and VW, refers to the relation of these spaces to a discretization of the domait. [0
Indeed, in the finite element method, we consider the meshk@ < x; < --- < Xm =7
with mesh parametdr = maxj=1__m(Xj — Xj—1). The functions iV}, consist of piecewise
polynomials. Specifically, in the linear finite element method there is one basis fuhgtion
associated with each nogeThe functionN; is 1 at nodej, O at all other nodes, and linear
on every intervalX;, x;41], j = 1,..., m— 1. The space¥;, andS;, are defined in terms

of these basis functions as
m
th{wh wh=Zaij}, (8)
j=1

Sh = {Un = vh 4+ On | vh € Vh, Gh = No(X)}. 9

The original variational problem is then replaced by the Galerkin problem:
find uy = vy + gn € Sh such tha wy € Vi,  a(vh, wp) = —a(gh, wp). (20)

The Galerkin finite element theory [14-16] ensures that the solutjoof the Galerkin
problem (10) converges in the Sobolev norm to the solutioithe variational problem (6) as
h — 0. Howevery is highly oscillatory for large values &f and an accurate approximation
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up is obtained only for very small values bf Hence, the number of unknowns in the
Galerkin method grows rapidly &s— oo, and the problem is eventually computationally
intractable. Our goal is to introduce a more efficient solution spgaaghich gives accurate
approximations with relatively large valuesofeven for very large values & Towards
this goal, we first study the asymptotic solution to the original problem (1)—(3).

2.2. Asymptotic Finite Elements
2.2.1. Elements of the Asymptotic Theory

We shall now determine the asymptotic formugk) in (1) by using the W.K.B. method
[17]. Hence we seek a solution of the form

u(x) = K(x) exp(ik S(x)), (12)

whereK (x) is the amplitudeS(x) is the phase, and e S(x)) is the phase factor. Both
K andS are slowly varying, so they can be resolved numerically on a grid which is mu
coarser than that required for

To get an equation fo& we introduce (11) into (1) and divide the resulting expressiol
by k? €XSX to obtain

K(”Z—Sf)+i%(2KxSA+KSxx)+k—12Kxx=o. (12)

Upon equating to zero the coefficient kff, the leading order term in (12), we obtain the
eiconal equation of geometrical optics

SE(X) = n?(X). (13)

The solution of (13) for which (11) satisfies (3) to leading ordek ia S(x) = fox n(s)ds.
We substitute this expression f8¢x) into (11) and (12). From (12) we get

1
Then we use (11) in (2) and (3) to obtain
K@) =1 Kx@@)=0. (15)

Now, we seek an expansion f&r of the form
K~ Kk, (16)
j=0

To determine the coefficients;, we substitute (16) foK into (14), gather coefficients of
equal powers ok, and then equate the coefficient of each powds tof zero. This yields a
system of equations fd€;, ] =0, 1, 2.... The equation foKg is

n

Kox + 2—:] Ko = 0. 17)
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The solution of (17) which satisfies (15)4&(0)/n(x) provided thany () = 0, and then

(16) yields
0
K = ,/% +O(1/k). (18)

2.2.2. Asymptotically Derived Basis Functions

From (18) we see that fde large,K is a smooth function ok. HenceK can be repre-
sented accurately by a piecewise linear finite element basis on a coarse mesh. More
the degree of accuracy is retainedkas> oo, and no mesh refinement is necessary. Thit
leads us to introduce the asymptotic finite element basis functions

M;j (X, k) = Nj(x) exp(ik/ n(s)ds), (29)
0

whereN; (x) is the piecewise linear basis function associated with rjode also define
new spaces of test functions and trial solutions for the Galerkin problem (10):

m
Vﬁ:{wﬁ wﬁzzaij}, (20)
j=1

Si={uf = v + g | vf € Vi o = Mo(x, K) }. (21)

The new Galerkin problem is
find uf = vf + gk € Sk such thay wi € VK, a(vf, wf) = —a(gf, wf), (22)

with a defined in (7). The solution,
m
uk =3 aM; + Mo, (23)
j=1

to problem (22) is obtained in a standard fashion (see [14]) by solving the system

a(Mq, M) a(My, Mp) ... a(Mp, My) a —a(Mp, Mq)
a(My, M2)  a(Mz, Mz) ... a(Mm, M2) & |- 0 . (24
a(M1, Mm)  a(Mz, M) ... a(Mm, Mm) &m 0

The functionsu € SK andw e V¥ have the forms

u(x) = p(x) exp(ik/ n(t)dt), w = q(X) exp(ik/ n(t)dt), (25)
0 0
with p(x) € S andq(x) € V. We substitute (25) fou andw into (7) and use the identity

—pOINX) (X) = —(P)IGX)IN(X)) + p(X)'q(x)N(X) + pX)G(X)n’(x) (26)
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in the resulting expression to obtain the bilinear fam
ap )= [ 1 +ik@pan+ pamdx (27)
0
Then we note that the variational problem,

find p € S such thatforalg € V, a(p,q) =0, (28)

is the weak formulation of the amplitude equation (14)Kqrsubject to (15). It follows that
the system of equations (24) can also be obtained by applying the Galerkin method, \
piecewise linear finite elements, to problem (14)—(15).

2.3. Numerical Calculations

We shall now solve the Galerkin problem using the new asymptotically derived ba
functions, and again using the standard piecewise linear basis functions. Then we ¢
compare both results with the exact solution to problem (1)—(3). We shall use the waven
berk = 25 and the index of refraction

n(x) = exp[-10(x — 1)?)] + 1. (29)
Forx > m,n(x) —1<1.2x 1072,

N =50
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FIG. 1. The real part oli as a function ok. The Galerkin approximation fd¢ = 25 with asymptotic basis
functions (solid lines) is indistinguishable from the exact solutiof. (The number of grid point® is shown
above each graph. The approximation with the standard linear basis (dashed lines) agrees with the exact sc
only whenN = 1000.
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Three sets of computations were performed on uniform grids Wita 50, N = 250,
and N = 1000 points. On each grid the solution was computed by a standard linear fir
element method and by a Galerkin method with the asymptotically derived basis functic
The results of both computations are compared graphically with the exact solution in Fig
The “exact” solution is in fact an accurate approximation obtained with the linear basis
a uniform grid with 2000 points. The maximum error in this accurate approximation wi
estimated to be less than 0.008 by comparing it to the solution obtained with 4000 poil
The solution based on the asymptotic elements is indistinguishable from the exact solu
even for the smallest valug =50. The solution based on the linear elements achieves tl
same “graphical accuracy” as the solution based on the asymptotic elements only w
the number of grid pointdl = 1000. Thus wittk = 25, the use of linear elements requires
20 times as many points as using asymptotic elements for the same accuracy.

3. PROBLEMS IN TWO DIMENSIONS

3.1. Variational Formulation and Galerkin Approximation

We now extend the method of Section 2 to two dimensions. We consider scattering
a simple curvd", of a time harmonic plane wave of unit amplitude, traveling to the righ
along thex axis. We seh(x, y) = 1 for simplicity, althougm(x, y) # 1 can be treated in
a similar way. Hence we seek a solution of

Au+Kku=0 (30)
in the unbounded domain exterior to the simple curv&Ve seeku of the form
u=ée4us, (31)

wheree** andu® are the incident and scattered fields, respectively. We imposetbe
boundary condition

ux,y)=0, (x,y)erT, (32)

and onu® the Sommerfeld radiation condition

Y KU
lim r — —iku® ) =0. (33)
r—oo or

In practice,u® is computed in a bounded computational dom@irbounded internally
by the scatterel" and externally by an artificial external boundary which we refer to a
9. Usually a nonreflecting boundary condition is used @to replace (33) (Givoli [18]).
However, in the examples we consider the exact solutjgis known, so o2 we impose
the value of

S

au .
f(x,y) = a—r‘?x —ikus,. (34)
Hence the computational problem which we solve is (30ufosubject to the conditions
us = —expikx), (x,y) €T, (35)

1V
%—lku =fXx vy, XYy €. (36)
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We now introduce the variational formulation of the problemud&rFirst we introduce
the spaces

S={ulueHYQ);ux y) = —expikx), (x,y)eT} (37)
and
V={w|weH(Q);wkx,y)=0, (X,y)eTl}. (38)

The Sobolev spack *(2) consists of all complex valued functions @whose first order
partial derivatives are square integrable. The variational formulation of (30f feubject
to (35) and (36), is

findu € S suchthatforalw € V, a(u, w) = —(f, w),, (39)

a(u, w):—// Vu(x,y) - Vw(x, y)dxdy
Q

+k2// u(x, y)w(x, y)dxdy+/ikuwds (40)
e

Q

(f, w), =/f@ds (41)
Q2

This formulation is derived in standard fashion by multiplying both sides of (3@) bypd ™
integrating by parts [14].

In order to define the Galerkin approximation to problem (39), we introduce the fini
dimensional approximation$, and)V;, of S andV, respectively. All members afy, € Vy,
vanish or vanish approximately ah and each member &, admits the representation

Un = vh + Oh, (42)

wherevy, € Vy, andg, satisfies exactly or approximately the Dirichlet condition (35)on
The Galerkin formulation is:

find up = vy + Oh € Sh such that fov wy, € W,
(43)
a(vh, wn) = —a(gh, wn) — (fn, wn)s.

The subscriph in V}, andS;, refers to a discretization @t. Here, we consider a triangu-
lation of 2, as depicted for example in Fig. 2. The mesh parantetethe maximum edge
length over all triangle§ in the mesh. The number of nodes in this triangulationis
and the set of node indiceds n = {1, ..., NV}. The set)q contains indices of nodes dh
With nodej, we associate the basis functiblj, which is 1 at nodg, O at all other nodes,
and linear on every triangle [14]. Higher order basis functions can also be considered. \
this notationwy € V, andg in (42) have the forms

Wh = Z ajN;j, ghzzngj, (44)

jen—na j€na
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-1.5 -1 -0.5 0
X X

FIG.2. Left: the rays reflected from the surface of the parabola. Right: the triangulated computational dom:

whereg; is the value of at nodej. The solutionvy, in (42),
vh = Z X;iNj, (45)
jen—nq
is determined by solving the linear system
> a(Np NDXj=—>"a(Nj, N)g; — (f. N, i en—na. (46)
jen—na j€nd
3.2. Asymptotically Derived Finite Elements
3.2.1. Elements of the Asymptotic Theory

The asymptotic theory for problem (30)—(33), based on geometrical optics and the g
metrical theory of diffraction, is described in detail in [4—6]. Here, we review elements |
that theory necessary for the development of asymptotic basis functions. In the asympt
theory, one seeks the solutiahin (31) as a superposition of the form

L
U, Y) = Y A, Y) expikS (X, Y)). (47)

1=1

HereL is the number of fields. In the examples we consider here, the sum (47) consist
a reflected field and possibly one or two diffracted fields, and a shadow forming field,
we shall see. Each field

A(X, y) explik S(x, y)) (48)
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is a solution to Eq. (30). In (48)A is called the amplitudek the wavenumbergkS*.y)
the phase factor, anfl the phase. We shall use the methods of the asymptotic theory
determine the phase of each field.

First we substitute (48) into (30) and cancel the phase factor to obtain

—K[(VS)? —1]A+2ikVS- VA+ikAAS+ AA=0. (49)

Equating the leading order term of (49) to zero yields the eiconal equation of geometr
optics:

(VS92 —-1=0. (50)

This is a first order nonlinear partial differential equation for the pt&sehich we solve
by the method of characteristics [6]. To do so we introduce the two-parameter family
characteristic curves or ray§(o, ), Y (o, 7), and the equations

dX(o,7) d¥Y(o, 1)

do S do

=S, (51)

In this case S, = S(r) and S, = S§;(r) are independent of the arclengthbecause the
index of refraction is a constant. Hence the rays propagate along straightlines in the direc
VS

X(o,7) = X(0, 1) +0S5(1), Y(o,7) =Y, 1)+ 0S5(1). (52)

On each ray, the phase is determined from the equation

dSo,7) 1

do ’ (43)
o)
S(o, 1) = S(7) + 0. (54)
The initial conditionS(7) = S| is determined on the surface of the scattéter),
I'(r) = (X0, 1),Y(O,1)). (55)

From the boundary condition (35) for the reflected fiedgl;z) = X (0, ). Arguments
pertaining to the geometrical theory of diffraction yiedglt) for the diffracted fields. To
determine the ray directio S(t) we use (50) and the strip condition &n

dS(r)
dr

X Y
S5 +Sm5 - (56)

3.2.2. Asymptotically Derived Basis Functions

We define the asymptotic finite element basis functions associated witH @sidhe
collection

M.y ). (57)
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Here\ is the number of nodes in the grid and

M; (%, y, k) = Nj (X, y) expik S (X, ). (58)

HereN; is the linear nodal finite element function for nogdend the phase factor efigS)
is determined by the method of the previous section. To repre8§ém(47) efficiently, the
space of trial solutions must represent each field*dgdfficiently. Hence we define

st={u =k ra

Ve = {wﬁ

The functiongl in (59) is represented in terms of basis functions associated with the reflec
field M| because only the reflected field is nonzerdoience to satisfy (35g; must be
given by

¢a4¢=zmm@, 59

j€nd

L
wr=> > a'jlvl}}. (60)

=1 jen—ng

g;= —eXFXIkXJ)/MJr(XJ, Yi» k)»

with (X;, y;) the coordinates of nodgonT". The Galerkin problem is

find uf = vf + gf € Shsuch that fov wy e V¥,

(61)
a(vﬁ, wﬁ) = —a(gﬁ, wﬁ) — (fr'f, wﬁ)
Its solution satisfies the linear system
L
Yo > aMi,MM)X| == a(M], MM g; — (fy. M"),,
I=1 jen—nq jend
ien—ng, m=1...,L. (62)

3.3. Scattering from a Parabolic Cylinder
3.3.1. Rays and Phase of Scattered Field

We begin by studying the exterior problem of scattering of the plane wavéeydrom
the surface of the parabola

2 1
Ly = <y2 ~ 5 y>. (63)

In this case, the scattered fieltigiven by (47) consists only of a reflected field, so we write
U =u" = A (X, y) expik§ (x, ¥)). (64)

We shall determine the rays and ph&sef this field following the method of Section 3.2.1.
The boundary condition (35) implies th8t(x, y) = x onT". Thus

2 1 2
s(y— y>550(y):y2_

2 2 (65)

NI =
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in view of the parameterization (63). Now we use (50), (56), and (65) to determine the |
directionVS(y) onT:

2 _
y 1 2y (66)

S(y) = VTl S(y) = Vi1

By using (63) and (66), we find that dh

YOy Sy 2

- — . 67
X©0,y)  Sd(y) y*—-1 (©7)

This implies that the rays propagate in the radial direction, as depicted in Fig. 2. We ¢
note that

S(y) =ro(y) — 1, (68)

whererg(y) is the distance from the origin to the poifity). By using (68) in (54) with
o =1 —ro(y), we find thatS(o, t) =r — 1. Thus

explikS (x,y)) = e Mexplikr), r=+/x2+y2 (69)

3.3.2. Numerical Calculations
We choose the computational domatrto be exterior to the parabolaand interior to
the circle

y? + (X + 3/8)% = .52, (70)

as is shown in Fig. 2. The mesh paramétawhich is the maximum over all triangldsof
the largest edge length @f, ish = 0.0937.
In (34) we use the exact expression for the scattered field, which is (see [19])

F(nvk)
F(Wk)

HereF is the Fresnel integral, which we compute numerically using the formula

Ugy(X, y) = —exp(ikx) (71)

F(w) = %ﬁe”’“— {/ cost?dt + i /
0

sint? dt} . (72)
0

The parabolic cylinder coordinatésandy are defined by

X=-@E>—n%, y=né. (73)

We compute the Galerkin approximation to the problem (30), (35), (36u¥dn
with T' defined by (63), using both the asymptotic basis and the standard linear bs
for k =1, 10, 20, 30. The initial mesh with 67 unknowns is depicted in Fig. 2. In eacl
computation, the mesh is uniformly refined until the maximum relative error at the no
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TABLE |
The Number of UnknownsN and the Maximum Relative Error
at the Node Points, in the Galerkin Approximation?

Linear basis Asymptoic basis
k N |IRelative erroj ., N |IRelative erroj .,
1 67 0.00066 67 0.00021
10 1309 0.039 67 0.0024
20 5401 0.020 67 0.00081
30 21937 0.015 67 0.00084

2 The approximation with piecewise linear basis functions is in the left col-
umn, and that with the asymptotic basis functions is in the right column.

pointsislessthan 0.04. The numbers of unknowns required by the two methods are comp
in Table I. This computation was done with the exact Neumann boundary conditi.on
We see that the number of unknowns necessary to achieve the required accuracy witl
piecewise linear basis grows rapidly wikh while the computation with the asymptotic
basis requires a fixed number of unknowns. The maximum errors at the node points are
compared in Table I. We see that in all cases the solution with the asymptotic basis yie
a higher accuracy for a substantially lower cost.

The top panel of Fig. 3 shows lggof the maximum absolute value of the relative error
as a function ok, using the asymptotic basis. In the bottom panel, Jag the condition

L
INg
)

ative errorl]

|
g
©

-3

Iog10 lirel

Y ; ; a ; .
10 20 30 40 50 60 70 80 90 100
Wavenumber k

194 ! ! ! ! ! ! ! !
o _ , _ _ _ v _ _
1.9
<
= 1.88
f=3
= 1.86
o

1.84

1.82

18 ; ; ; ; .
10 20 30 40 50 60 70 80 90 100
Wavenumber k

FIG. 3. The top panel shows the Iggof the maximum absolute value of the relative error as a functidn of
using the asymptotic basis. In the bottom panel,Jodthe condition number (A) of the matrixA, which arises
in the Galerkin method using the asymptotic basis, is shown as a function of
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numberk (A) of the matrix A, which arises in the Galerkin method using the asymptoti
basis, is shown as a function kf The relative error is computed by subtracting the com
puted solution fromug, given by (71) and dividing byg,. The top graph shows that it
does not increase witk, and the bottom graph shows that the condition number does n
increase wittk.

3.4. Scattering from a Circular Cylinder
3.4.1. Rays and Phase of Scattered Field

We now consider the exterior problem for scattering of an incident plane wave by a cir
of radiusa. With a as the unit of length, and witkl denoting the dimensionless product
ka, we write the plane wave as = exp(ikx), omitting the prime. The is the unit circle

I'(t) = (cost, SinT). (74)

The asymptotic theory for this problem is described in detail in [5, 6]. The scattered fie
consists of four terms

w=u + usf + ud+ + udf’ (75)

which are the reflected field", the shadow forming fieldi, the diffracted fieldud*
originating at (0, 1), and the diffracted field~ originating at(0, —1). The fieldsu" and
usf satisfy the boundary conditions

u (x,y) = —expikx), x,y) eI, x<0, (76)
usf(x,y) = —explikx), (x,y)el, x=>0. (77)

Both diffracted fields vanish on the surface of the cylinder. The fi&ldn the regiorx > 0,
ly| < 1is called the shadow forming field becaw$é + u' = 0 in that region, as we shall
see.

We determine the reflected rays and phase by the method of Section 3.2.1. The ray:

X(o,7) =C0ST —0COSZ, 7m/2<7T <31/2, (78)
Y(o,7) =sint —osin2r, w/2<7t <31/2 (79)

are depicted in Fig. 4. The phase factor is
explikS (x, y)] = explik(cost +o)], m/2 <71 <3m/2. (80)

Similarly for us’ the rays and phase factor are

X(o,t) =cost +o0, —nw/2<71<7m/2, (81)
Y (o, ) = sint, —n/2<t<m/2, (82)
exp(ikS (X, y)) = exp(ikx), —mw/2<7t <m/2. (83)

In the shadow regionjy| < 1, x > 0, usf + u' = 0 [6]. However, the exact solution is
nonzero there, in view of diffraction effects. The additional tewfis and u?- in (47)
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-2 .
—2 —1

FIG. 4. The left panel shows the rays reflected by the circular cylinder, and the rays of the shadow form
beam. The right panel shows the diffracted rays emanating from (0, 1).

account for the diffracted field. The rays associated with u?~ are called diffracted rays
[4]. Each incident ray which is tangent to the cylinder gives rise to a surface diffract
ray. Here the incident rays are tangent at (0, 1) @d-1) and bound the shadow region.
Each surface diffracted ray travels along the surface of the cylinder starting at the pc
of diffraction. As it travels along the surface, it sheds additional diffracted rays into tt
domain. These new rays leave the surface of the cylinder tangentially.

The surface diffracted ray emanating from (0, 1) travels in the clockwise direction alo
the surface of” and sheds the family of rays

X(o, 1) =Ssint +ocost, 1,0 >0, (84)

Y (o, 1) = coSt — o SinT, (85)
depicted in Fig. 4. The associated phase is
S, =t+o0. (86)

The surface ray emanating fro@, —1) travels in the anticlockwise direction and sheds
the family of diffracted rays

X(o,7) =0 cost +sint, 1,0 >0, (87)
Y (o, 1) = 0 Sint — COST. (88)

The phase is
S =1t+o0. (89)

The fact thatr is unbounded in (84)—(89) implies that a surface diffracted ray travels ¢
infinite number of times around the cylinder and sheds infinitely many diffracted rays in t
same direction. Since their phases differ by integer multiplestéf2we choos&’ = ka
to be an integer. Then their phase factors are all equal:

expikSy, (X, ¥)) = explik(r +0)), 0<t <27 (90)
expikSy_(x, y)) = explik(t +0)), 0<7 < 27. (91)
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FIG. 5. The illuminated computational subdomain< 6 < 3w /4, 1<r < 1.5 (left panel) and the shaded
subdomain 6< 0 < 7/4, 1 <r < 1.5 (right panel).

3.4.2. Numerical Calculations

We begin by presenting computational resultsf®on two subdomains of the exterior
of the unit disk. They are the sector<06 < /4, 1<r < 1.5 and the sectorr <6 <
3r/4,1<r < 15, depicted in Fig. 5. We refer to these subdomains as the shaded and
illuminated subdomains, respectively, because the first is in the shadow and the seconc
theilluminated region. Their mesh parameterdere0.1106 andh = 0.1043, respectively.
The purpose of these computations is to demonstrate that our basis functions can prc
an accurate representation of the solution. Therefore in each computational domain
impose the Dirichlet condition® = —&** on the unit circle. On the rest of the boundary
of each computational domain, we impose the Robin condition (34). The exact solut
is

=k
XY == Y eni” S0 Hiko) cosn, (92)
n=0 n

wherep and¢ are the polar coordinates of the poist y), andJ, andH?! are the Bessel
function and the Hankel function of the first kind, respectively [19].

Table Il presents the maximum relative error at the node points in each subdomain
several integer values of the wavenumken each case the computation was performe
twice, once with basis functions associated with the reflected or shadow forming field ol
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TABLE Il
The Maximum Absolute Value of the Error in the llluminated and Shaded
Subdomains, with One Field (Reflected or Shadow Forming) and All Fields

llluminated region Shaded region

k Reflected field All fields Shadow forming field Al fields
20 0.0015 0.0017 0.0091 0.0025
40 0.0026 0.0018 0.0189 0.0059
60 0.0035 0.0044 0.0252 0.0052
80 0.0031 0.0055 0.0326 0.0055

and once with all fields. The lggof these data is presented in Fig. 6. The relative error i
nearly independent d.

We now present computational results @8iin the annulus & r < 1.5. The solution is
symmetric about the axig = 0, so it suffices to compute the solution in the half annulu:
y > 0 shown in Fig. 7.

In this domain the amplitude varies rapidly in thin regions or layers, in contrast to tl
previous cases. The region of rapid variation occurs near the surface of the circle, an
particular, near the point of diffraction (0, 1). As— oo, the neighborhood of the shadow

-1.6

-1.8

oo
|
L)

log,, Il relative errorll
.{;
n

-3

T T R =

e : —— One field (iluminated)
—&- Three fields (illuminated)
A icccos oo | —+— One field (shaded) -

o B _ : ~O— Three fields (shaded)
H o i = e ________.C“
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FIG. 6. The maximum relative error at the node points in each subdomain for several integer values of
wavenumbek. Computations were performed with one and three fields in both the shaded and the illumina

region.
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FIG. 7. The computational domain for scattering from a circle.

boundaryx > 0, y = 1 also requires local refinement. We use the grid depicted in Fig.
for all the computations. The mesh parameter of the outer part of the driekif.1018,

but near the surface of the circle iths= 1/50.

Table Il presents the maximum relative error at the nodes of the grid for different valu
of k. Each computation was performed once with the standard linear basis and once
the asymptotic basis. Here, the computation was done with the exact Neumann boun

condition onaQ2. We see that the asymptotic basis yields substantially better results.
Figure 8 shows log of the maximum absolute value of the relative error using th
asymptotic basis. The error is computed by usigiggiven by (92). The graph shows that
it does not increase much wikh The bottom panel indicates the condition number of the

asymptotic finite element matrix.
TABLE 11l

The Maximum Relative Error at the Node

Points in the Full Annulus

Linear basis Asymptotic basis
[Irelative errof|,

k [Irelative errof| .,
1 0.0013 0.0005
10 5.9493 0.0091
20 3.5240 0.0061
40 631651 0.0080
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FIG. 8. The log, of the maximum absolute value of the relative error using the asymptotic basis (top). Tl
condition number of the asymptotic finite element basis (bottom).

3.5. Summary of the Method and Extension to Three Dimensions
We now summarize the asymptotic finite element method for scattering problems:

1. Determine the components of the scattered field by using the ideas of geometr
optics and the geometrical theory of diffraction [4]. In our examples the parabola scatte
a reflected wave, while the circle scattered a reflected wave, a shadow forming wave,
two diffracted waves.

2. Determine the rays and the phase of each wave by the method of characteristics.
medium with a variable index of refraction, this may have to be done numerically.

3. Assemble the system of equations for the Galerkin method using the asymptotic b
functions, replacing (34) by a nonreflecting boundary condition [18].

4. Solve the system of equations.

5. Determine the solution by adding together all the waves.

Steps 1-5all apply in any number of dimensions and they can be automated. For simpli
we have illustrated them in one and two dimensions. We have shown that the condi
number of the resulting equations, although large, does not increase with the wavenur
k. The error does not increase much wkthither.

In more complicated problems more waves will have to be included in the solution. So
will result from multiple reflection, if the scatterer is not convex. Some will arise because
refraction, if the medium is not uniform. Others will result from edge or surface diffractior
if the scatterer is not smooth. They can all be multiply reflected, refracted, and diffracted
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addition, caustics will occur, necessitating the use of complex phase functions on the (
side of the caustic. The complex phase can be found by using complex rays or by sol
the eiconal equation in fractional powers of distance from the caustic.

All of these problems have been encountered in many problems of wave propagat
Consequently computer programs have been written to calculate rays which are reflec
refracted, diffracted, and multiply reflected, refracted, or diffracted. The programs a
calculate the phass(x) at points on these rays. The main complications arise in calculatir
the amplitudes of these waves, which is done numerically by our hybrid method. Me
examples of such calculations, in two and three dimensions, can be found in the b
Geometric Theory of Diffractioredited by Hansen [20].

In addition, methods have been devised to calculate the phase fuSckipdirectly by
solving the eiconal equation without using rays. Of course multiple valued solutions m
be found, corresponding to the various waves.

In the case of an opaque convex scattering object in three dimensions, the only w:
which occur inu® are the reflected, shadow forming, and surface diffracted waves. Caust
will occur in the surface diffracted waves. This will require mesh refinement in the neig
borhood of the caustic, and the use of a complex phase on its dark side. Aside from
difference, the other steps in the method are the same as those in the example of scat
by a circular cylinder.

We plan to present the method and results for some three-dimensional problems
subsequent paper.

APPENDIX: ASYMPTOTIC ORTHOGONALITY OF BASIS FUNCTIONS

In the examples we consider, basis functions associated with different components o
scattered field are asymptotically orthogonalkas co. Hence, they are linearly indepen-
dent for largek. Indeed, the directions of the rays associated with fiedohgim are different
except perhaps on a set of measure 0. Hence, foe any), there is a subs&f. c  such
that

/V|M}|\Z{"\ge/2, | #m, (A.1)
andVvVs # VS,in Q — V.. Then

(M}, M™) =/ MMM dxdy

€

17 , V(-5
— N; N; k(g — ————-nd
ik IQV) SXPIK(S = Sn) V(S-S "O°
1 . o V(S-S
i oy, expik(§ — Sy))V - (NJ N V(S - Sn)|2) dxdy, (A.2)

by the divergence theorem. Hence, for any 0 andk sufficiently large,
(M. M™)] <€, I#m. (A.3)

This proves the asymptotic orthogonalityMﬁ andM™.
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For small values of the wavenumbebasis functions could be linearly dependent and a
a result the condition number of the finite element matrix could be very large. If necess:
the condition number could be improved by removing redundant basis functions as
describe now.

Considerbasisfunctiom} Let{di},, di = M;i“‘ ,m; # | be basis functions associated
with nodej or one of its neighbors. The fact theag # | indicates thaMﬂ‘i represents a
field different fromM)}. Then, the projection o1} on spar{®;},

m
PIMj] =)y, (A.4)
i=1
is determined by solving the system (see [21])
|
(@101 (@2,91) ... @m DD\ [y, (M}. @1)
(P1,®2) (P2, P2) ... (P, D2) v | = | (Ml.®2) | (as5)
(P1, Prm) (P2, P) ... (Pm, Pm) Ym (M=a®m)

The basis functiom/l'j is considered redundant and is removed if

P[] - mill,
I =

wheres is a small parameter. We choose= Ch? to be commensurate with the truncation
error of linear interpolation associated with the grid.

The removal of redundant basis functions can be done simultaneously with the asser
of the system for low computational cost. Indeed, all inner prodgis @;), (i, M'j) in
(A.5) are computed during the assembly, in view of the second term in the bilinear fol
(40). Hence, no additional computations are necessary to create the system (A.5).
regular mesh, the dimension of this system is very small and is bounded, since the nun
of neighbors for each node is small and is bounded. Hence the determingtjpnin{A.5),
and the subsequent test (A.6), requires a very small number of additional computation
is also possible to explicitly orthogonalize basis functions belonging to different fields |
the Gram—Schmidt process.
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